
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 11 – File I/O (Continued)

Prof. Jeremy Dixon

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/code/



www.umbc.edu

Last Class We Covered
• Escape sequences

– Uses a backslash (\)

• File I/O
– Input/Output
– How to open a file

• For reading or writing
– How to read lines from a file



www.umbc.edu

Any Questions from Last Time?



www.umbc.edu

Today’s Objectives
• To review how to open and read from a file

• To learn how to use the split() function
– To break a string into tokens
– And to learn the join() function

• To get more practice with File I/O
• To cover the different ways to write to a file
• To learn how to close a file



www.umbc.edu

Review from Last Class



www.umbc.edu

Using open()
• Which of these are valid uses of open()?

1.myFile = open(12, "r")
2.fileObj = open("HELLO.txt")
3.writeTo = open(fileName, "w")
4."file"  = open("test.dat", "R")
5.theFile = open("file.dat", "a")



www.umbc.edu

Using open()
• Which of these are valid uses of open()?

1.myFile = open(12, "r")
2.fileObj = open("HELLO.txt")
3.writeTo = open(fileName, "w")
4."file"  = open("test.dat", "R")
5.theFile = open("file.dat", "a")








not a valid string

not a valid filename uppercase “R” is not 
a valid access mode



www.umbc.edu

Three Ways to Read a File
• Write the code that will perform each of these 

actions using a file object called aFile

1. Read the whole file in as one big long string

2. Read the first line of the file

3. Read the file in as a list of strings (each is one line)



www.umbc.edu

Three Ways to Read a File
• Write the code that will perform each of these 

actions using a file object called aFile

1. Read the whole file in as one big long string
bigString = aFile.read()

2. Read the first line of the file
firstLine = aFile.readline()

3. Read the file in as a list of strings (each is one line)
stringList = aFile.readlines()



www.umbc.edu

Whitespace
• There are two ways we know of to remove 

whitespace from a string

• Slicing can be used to remove just the newline at the 
end of a line that we have read in from a file:
myLineWithoutNewline = myLine[:-1]

• The strip() function removes all leading and trailing 
whitespace (tabs, spaces, newlines) from a string
withoutWhitespace = myLine.strip()



www.umbc.edu

Using for Loops to Read in Files
• Remember, for loops are great for iterating!

• With a list, the for loop iterates over…
– Each element of the list (in order)

• Using a range(), the for loop iterates over…
– Each number generated by the range (in order)

• And with a file, the for loop iterates over…
– Each line of the file (in order)



www.umbc.edu

String Splitting



www.umbc.edu

String Splitting
• We can break a string into individual pieces

– That you can then loop over!

• The function is called split(), and it has 
two ways it can be used:
– Break the string up by its whitespace
– Break the string up by a specific character



www.umbc.edu

Splitting by Whitespace
• Calling split() with no arguments will 

remove all of the whitespace in a string
– Even the “inside” whitespace

>>> line = "hello world this is my song\n"
>>> line.split()
['hello', 'world', 'this', 'is', 'my', 'song']

>>> whiteCat = "\t\nI love\t\t\nwhitespace\n  "
>>> whiteCat.split()
['I', 'love', 'whitespace']



www.umbc.edu

Splitting by Specific Character
• Calling split() with a string in it, we can 

remove a specific character (or more than one)

>>> commas = "once,twice,thrice"
>>> commas.split(",")
['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"
>>> double.split("ll")
['he', 'o how i', ' are a', ' of your ', 'amas?']

these character(s) are 
called the delimiter



www.umbc.edu

Splitting by Specific Character
• Calling split() with a string in it, we can 

remove a specific character (or more than one)

>>> commas = "once,twice,thrice"
>>> commas.split(",")
['once', 'twice', 'thrice']

>>> double = "hello how ill are all of your llamas?"
>>> double.split("ll")
['he', 'o how i', ' are a', ' of your ', 'amas?']

notice that it didn’t remove the whitespace

these character(s) are 
called the delimiter



www.umbc.edu

Practice: Splitting
• Use split() to solve the following problems

• Split this string on all of its whitespace:
daft = "around the \nworld"

• Split this string on the double t’s (tt):
doubleT = "nutty otters making lattes"



www.umbc.edu

Practice: Splitting
• Use split() to solve the following problems

• Split this string on all of its whitespace:
daft = "around the \nworld"
daft.split()

• Split this string on the double t’s (tt):
doubleT = "nutty otters making lattes"
doubleT.split("tt")



www.umbc.edu

Looping over Split Strings
• Splitting a string creates a list of smaller strings

• Using a for loop with a split string, we can 
iterate over each word (or token) in the string

• Syntax:
for piece in myString.split():

# do something with each piece



www.umbc.edu

Example: Looping over Split Strings

>>> double = "hello how ill are all of your llamas?“
>>> for token in double.split("ll"):
...     print("y" + token + "y")
...
yhey
yo how iy
y are ay
y of your y
yamas?y remember, double.split("ll") makes the list

['he', 'o how i', ' are a', ' of your ', 'amas?']

append a “y” to the front and end 
of each list element, then print



www.umbc.edu

String Joining



www.umbc.edu

Joining Strings
• We can also join a list of strings back together!

– The syntax is very different from split()
– And it only works on a list of strings

"X".join(LIST_OF_STRINGS)

the delimiter (what we will use to join the strings)

function 
name

the list of strings we want to join together



www.umbc.edu

Example: Joining Strings
>>> names = ['Alice', 'Bob', 'Candi', 'Dave', 'Eve']
>>> "_".join(names)
'Alice_Bob_Candi_Dave_Eve'

• We can also use more than one character as 
our delimiter if we want

>>> " <3 ".join(names)
'Alice <3 Bob <3 Candi <3 Dave <3 Eve'



www.umbc.edu

Splitting into Variables



www.umbc.edu

Known (Formatted) Input
• Known input means that we know how the 

data inside a file will be formatted (laid out)

• For example, in workerHours.txt, we have:
– The employee ID number
– The employee’s name
– The hours worked

over five days
workerHours.txt
123 Suzy 9.5 8.1 7.6 3.1 3.2
456 Brad 7.0 9.6 6.5 4.9 8.8
789 Jenn 8.0 8.0 8.0 8.0 7.5

https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt



www.umbc.edu

Splitting into Variables
• If we know what the input will look like, we can 
split() them directly into different variables

var1, var2, var3 = threePartString.split()

all of the variables we want 
to split the string into

the string whose input we 
know, and are splitting on

we can have as many different 
variables as we want

https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt



www.umbc.edu

Example: Splitting into Variables
>>> s = "Jessica 31 647.28"
>>> name, age, money = s.split()
>>> name
'Jessica'
>>> int(age)
31
>>> float(money)
647.28

we may want to convert some of them to 
something that’s not a string

https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt



www.umbc.edu

Writing to Files



www.umbc.edu

Opening a File for Writing
• Use open() just like we do for reading

– Provide the filename and the access mode

fileObj = open("output.txt", "w")

– Opens the file for writing
– Wipes the contents!

fileObj = open("myNotes.txt", "a")

– Opens the file for appending
– Writes new data to the end of the file



www.umbc.edu

Writing to a File
• Once a file has been opened, we can write to it

myFile.write( "hello world!" )

• We can also use a string variable in write()

myFile.write( writeString )



www.umbc.edu

Word of Caution
• Write can only take one string at a time!

• These won’t work:
fileObj.write("hello", "my", "name")
fileObj.write(17)

• But this will:
fileObj.write("hello" + " my " + "name")

Why don’t these work?
the first is multiple strings
the second is an int, not a string

Why does this work?
concatenation creates one string



www.umbc.edu

Closing a File
• Once we are done with our file, we close it

– We do this for all files – ones that we 
opened for writing, reading, and appending!

myFileObject.close()

• Properly closing the file is important – why?
– It ensures that the file is saved correctly



www.umbc.edu

Exercise: Writing to a File
• Remember our grocery list program?
• At the end of our program, the user has added 

all of their items to the list grocery_list

• Write the contents of grocery_list to a file
– Don’t forget to open and close the file!



www.umbc.edu

Solution: Writing to a File
# code above this populates grocery_list

# open file for writing
gFile = open("groceries.txt", "w")

for g in grocery_list:
# print each item, plus a newline
gFile.write(g + "\n")

# close file
gFile.close()



www.umbc.edu

Writing to a File: Newlines
• Why did we need a newline in our example?

• Without it, our file looks like this:
durianscoconutlimecoke

• But with it, each item is on a separate line:
durians
coconut
lime
coke



www.umbc.edu

Batch Programs



www.umbc.edu

Batch Programs
• Batch mode processing is where program 

input and output are done entirely with files 

• The program is not designed to be interactive



www.umbc.edu

Practice



www.umbc.edu

Exercise
• Suppose we have this hours.txt data:

123 Suzy 9.5 8.1 7.6 3.1 3.2
456 Brad 7.0 9.6 6.5 4.9 8.8
789 Jenn 8.0 8.0 8.0 8.0 7.5

• Compute each worker's total hours and hours/day
– Assume each worker works exactly five days

– Sample output:
Suzy ID 123 worked 31.4 hours: 6.3 / day
Brad ID 456 worked 36.8 hours: 7.36 / day
Jenn ID 789 worked 39.5 hours: 7.9 / day

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

workerHours.txt
123 Suzy 9.5 8.1 7.6 3.1 3.2
456 Brad 7.0 9.6 6.5 4.9 8.8
789 Jenn 8.0 8.0 8.0 8.0 7.5



www.umbc.edu

Exercise Answer

def main():
input = open("hours.txt")
for line in input:

id, name, mon, tue, wed, thu, fri = line.split()

# cumulative sum of this employee's hours
hours = float(mon) + float(tue) + float(wed) + \

float(thu) + float(fri)

print(name, "ID", id, "worked", \
hours, "hours: ", hours/5, "/ day")

main()

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt



www.umbc.edu

Exercise
• Write code to read a file of gas prices in USA 

and Belgium:
8.20   3.81   3/21/11
8.08   3.84   3/28/11
8.38   3.92   4/4/11

...

• Output the average gas price for each country 
to an output file named gasout.txt

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt



www.umbc.edu

Exercise: Batch Usernames
• Let’s create usernames for a computer system 

where the first and last names come from an 
input file

– A username is the first letter of their first name, and 
the first 7 letters of their last name (lowercase)

• Get the input and output files from the user



www.umbc.edu

Example Program: Batch Usernames
# userfile.py
#    Program to create a file of usernames in batch mode.

def main():
print ("This program creates a file of usernames from a")
print ("file of names.")

# get the file names
infileName = input("What file are the names in? ")
outfileName = input("What file should the usernames go in? ")

# open the files
infile = open(infileName, 'r')
outfile = open(outfileName, 'w')

[continued...]



www.umbc.edu

Example Program: Batch Usernames
[...continued]

# process each line of the input file
for line in infile:

# get the first and last names from line
first, last = line.split()
# create a username
uname = (first[0]+last[:7]).lower()
# write it to the output file
print(uname, file=outfile)

# close both files
infile.close()
outfile.close()

print("Usernames have been written to", outfileName)



www.umbc.edu

Announcements
• We will be doing an in-class worksheet next time

– Bring pencils and paper (or your notebook)

• Homework 4 is out
– Due by Tuesday (Oct 6th) at 8:59:59 PM

• Midterm is next week – Oct 14th and 15th
– You must bring your UMBC ID with you to the exam!  

We won’t accept your test without it.


	CMSC201� Computer Science I for Majors��Lecture 11 – File I/O (Continued)
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Review from Last Class
	Using open()
	Using open()
	Three Ways to Read a File
	Three Ways to Read a File
	Whitespace
	Using for Loops to Read in Files
	String Splitting
	String Splitting
	Splitting by Whitespace
	Splitting by Specific Character
	Splitting by Specific Character
	Practice: Splitting
	Practice: Splitting
	Looping over Split Strings
	Example: Looping over Split Strings
	String Joining
	Joining Strings
	Example: Joining Strings
	Splitting into Variables
	Known (Formatted) Input
	Splitting into Variables
	Example: Splitting into Variables
	Writing to Files
	Opening a File for Writing
	Writing to a File
	Word of Caution
	Closing a File
	Exercise: Writing to a File
	Solution: Writing to a File
	Writing to a File: Newlines
	Batch Programs
	Batch Programs
	Practice
	Exercise
	Exercise Answer
	Exercise
	Exercise: Batch Usernames
	Example Program: Batch Usernames
	Example Program: Batch Usernames
	Announcements

